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Abstract 

Stable paramagnetic Mn(II) and Mn(III) bis(alkynyl) complexes of the type [trans(RC~C)2Mn(dmpe)2] n+ (R z Ph, SiMe 3, n z 0,1) 
have been prepared and characterized by spectroscopic, electrochemical, magnetic measurements and X-ray single crystal diffraction 
studies. 
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There is growing interest in complexes with two 
trans cr-alkynyl ligands due to their potential applica- 
tion as building blocks in the synthesis of new rigid rod 
materials. These compounds are expected to display 
nonlinear optical, conducting or liquid crystal properties 
[1,2]. Previously, the search for such bisacetylide com- 
plexes has been restricted to transition metals of Groups 
VHI-X [2a-d,3] all of which form diamagnetic com- 
pounds. Paramagnetic analogues of such species exhibit 
electronic open shell configurations and are therefore 
expected to be more polarizable (open shell molecules 
normally have small HOMO/SOMO or S O M O / L U M O  
gaps)Na fundamental requirement for nonlinear optical 
materials [4]. For such reasons we were therefore chal- 
lenged to investigate the preparation of paramagnetic 
bis(alkynyl) Mn(II) and Mn(III) derivatives. 

In the presence of bis(dimethylphosphino)ethane 
(dmpe) the reaction of anhydrous MnBr 2 with lithium 
alkynyls in THF results in the formation of the ther- 
mally stable complexes 1 and 2 (Scheme 1) [5]. These 
compounds are easily oxidized in air, by ferricenium 
hexafluorophosphate or tetrafluoroboric acid etherate, 
yielding the cationic species [1] ÷ and [2] + with PF 6- 
and BF 4- counterions [7] respectively. Complexes 1 and 
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2 and [1] + and [2] + represent unique bis(alkynyl) 
derivatives, since only a few examples of stable para- 
magnetic mono cr-alkynyl metal complexes have been 
reported previously [8]. It is interesting to note that the 
reactions of 1 and 2 with HBF 4 did not afford cationic 
vinylidene complexes with protonation of the/3-carbons 
of the acetylide moieties. These centers are apparently 
not nucleophilic in contrast to diamagnetic alkynyl 
derivatives, which can be attacked by electrophiles at 
this position [9]. Air oxidation of 1 produces the 
[1]+OH - system. The comparable reaction of 2 also 
leads to an Mn(lII) species, however, its exact nature 
cannot yet be elucidated. 

[1] + and [2] + turned out to be air-stable in the solid 
state and in solution, and it was possible to convert 
them back to 1 and 2 by reducing agents such as sodium 
amalgam or sodium trimethoxyborohydride (Scheme 1). 
These transformations were carried out; reaction of [1] + 
and [2] + with trimethoxyborohydride did not lead to 
products of a nucleophilic attack of H-  on the acetylide 
ligand, the acetylenic chain of [1] ÷ and [2] + could be 
attributed a nonelectrophilic character. Therefore we 
assume that these molecules represent electronically 
highly delocalized systems. This is supported further by 
the fact that, unlike 17e- transition metal monoalkynyls 
[10] generated from the oxidation of 18e- precursors, 
none of the compounds 1 and 2 or [1] + and [2] + 
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Scheme 1. 

undergo coupling reactions to form binuclear complexes 
spaced by 1,3-butadien-l,4-diylidene ligands. 

1 and 2 and [1] + and [2] + were characterized by IR, 
EPR and ~H NMR spectroscopy, magnetic susceptibil- 
ity, and mass spectrometry [5,7]. Their structures are 
readily derived from these data. In the mass spectra of 
all compounds (EI,FAB) the parent ions are observed. 
The IR spectra display v (C-C)  absorptions and the 
frozen solution EPR spectra of 1 and 2 show complex 
isotropic features near g = 2, consistent with low-spin 
Mn(II) (S = 1/2) in an axial ligand field. A hyperfine 
structure is observable due to coupling to 55Mn (I = 
5/2),  and four equivalent 31p (I = 1/2) of the equato- 
rial dmpe ligands with a slightly larger A value (55Mn) 
for 1 (Fig. 1). The corresponding Mn(llI) derivatives 
[1] + and [2] + were EPR silent. 

Magnetic susceptibility data for 1 and 2 [5] and [1] ÷ 
and [2] + [7] obtained by the Faraday technique confirm 
paramagnetism in all cases. The magnetic moments of 
these complexes are near the spin only values for 1 and 
2 unpaired electrons for the neutral and the cationic 
species respectively. They show no temperature depen- 
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Fig. 1. EPR spectrum of I in a toluene glass. 
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Fig. 2. X-ray structure of complex 1. Selected bond lengths (/~): 
Mn(1)-P, 2.267.3 (av.); Mn(1)-C(1), 1.953(11), Mn(I)-C(3), 
1.970(11); C(1)-C(2), 1.217(16); C(3)-C(4), 1.215(16). Selected 
bond angles (°): C(1)-Mn(1)-C(3), 179.2(3); Mn(I)-C(1)-C(2), 
178.4(9); Mn(I)-C(3)-C(4), 178.1(8); C(1)-C(2)-C(IO), 175.0(10); 
C(3)-C(4)-C(16), 178.8(11). 

dence between 79 and 293 K. These values suggest 
low-spin octahedral d 5 (1,2) and d 4 ([1] +, [2] +) elec- 
tronic configurations. Low-spin electronic states were 
also found in the Me2Mn(dmpe) 2 [11] and [Me2Mn- 
(dmpe)2] + [12] derivatives. 

I H NMR spectroscopy provides useful structural in- 
formation on 1 and 2 and [1] + and [2] + despite the fact 
that these complexes are paramagnetic species. The 
spectra exhibit two broad signals of the dmpe methyl 
and methylene protons (8 (ppm) around -15.5 and 
- 1 4  (1,2), - 3 8  and - 2 8  ([1] +, [2] +) respectively). 
The phosphorus ligand signals o f  1 and 2 are close to 
those of the low-spin Mn(II) complex Me2Mn(dmpe) 2 
and are very different from those of the high-spin 
complexes, X2Mn(dmpe) 2 ( X = B r ,  I)[11]. The IH 
NMR resonances of all compounds are temperature 
dependent, which sharpen and shift low-field [5,7] upon 
heating. These results reveal that I H NMR spectra of 
such Mn complexes are quite indicative of the respec- 
tive spin-state of the Mn center and can be used as a 
sensitive tool for the distinction of their different elec- 
tronic states. 31p NMR resonances were not observable, 
presumably because of the line broading induced by the 



V.V. Krioykh et al. / Journal of  Organometallic Chemistry 511 (1996) 111-114 113 

C(7o) 

C(8a)~,,~ (3~al (4al 

,C(2a} 
C(13a)~) ( 

C ( 1 4 ~  

C(14) T 

C1131 C111 
C(2) 

C(811 
C(7I 

C(6) i 

)C{1o) 

in(1) 

~C(3) 

I C(4} 

C(5) 

p C(9ol 

P(Io) ~ C111o) 

~,'~ C(11} 

) C(91 

Fig. 3. X-ray structure of the cationic unit of [I]+OH-'H20. 
Selected bond lengths (/~): Mn(1)-P, 2.323(5)(av.); Mn(1)-C(i), 
1.961(6); C(1)-C(2), 1.216(8). Selected bond angles (°): C(1)- 
Mn(1)-C(la), 177.2(12); Mn(1)-C(1)-C(2), 173.7(14); C(1)-C(2)- 
C(3), 173.7(19). 

close proximity of the phosphorus nuclei to the para- 
magnetic centers. 

The crystal structures of 1 [13] (Fig. 2) and [1] + [14] 
(Fig. 3) were determined by X-ray diffraction studies 
[15]. 1 and [1] + have octahedral coordination, in which 
the two phenylacetylide ligands occupy trans sites and 
the four P atoms are located in an "equator ia l"  plane. 
The manganese atom in [1] + lies on a crystallographic 
center of symmetry. There is little distortion from lin- 
earity of the C m C - M n - C ~ C  chain in both compounds. 
It is interesting to note that the M n - C  and C~-C bond 
lengths are apparently insensitive to the oxidation state 
change and are almost identical in 1 and [1] + (1.96 and 
1.22 A respectively). The M n - C  bonds in 1 and [1] + 
are slighdy shorter than the M n - C  bond in PhC-:  
CMn(CO)3[P(OPh)3] 2 (2.002(6) A) [16]. In contrast to 
the M n - C  and C - C  separations, the M n - P  bond dis- 
tances in 1 and [1] ÷ differ. 

The average M n - P  bond length (2.27 /~) in 1 is 
significantly shorter than that in the Mn(I~) analog [1] + 
(2.32 A). The same bond distance behavior was found 
for Me2Mn(dmpe) 2 [1 lb] (2.24-2.25 ,~) and [Me2Mn- 
(dmpe)2]+BPh4 - [121 (2.32 A). 

The cyclic voltammograms of 1, 2, [1] + and [2] + 
were recorded for 3 × 10 -3 M solutions in 0.1 M 
tetraethylammonium perchlorate/acetonitrile (scan rate 
100 mV s- I ) .  Two chemically reversible one-electron 
oxidations occur at very close potentials for both series 
of derivatives: - 0 . 6 8 5  V (AEp = 90 mV), +0.58 V 
(AEp = 80 mV) for 1 and [1] + and - 0 . 7 0  V (AEp = 80 
mV), +0 .57  V (AEp = 100 mV) for 2 and [2] +. These 
close values also suggest that the redox processes occur 
at the Mn centers and are therefore only marginally 
influenced by the rather distant acetylide substituents 
[4]. The first redox step is attributed to an 
Mn(II) /Mn(III)  transfer and the second can be assigned 
to the Mn(III) /Mn(IV) couple, These values resemble 
those for trans-C12 MnL 2 (L = o-phenylenebisdimethyl- 
phosphine) (approximately - 0 . 6  V for Mn(II) /Mn(l l I )  
and +0.78  V for Mn(III) /Mn(IV))  [17]. The isolation 
and characterization of the Mn(IV) derivatives is in 
progress. 
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